Imaging Diagnostico e Tecnologie in TC

al di là dei "numeri"

Pisa, 20/12/2016

Vito Faranna

Made For life

"stato dell'arte"

PUREViSION Optics

From photon generation, beam distribution to efficient detection

X-ray Generation

Small focal spot utilization for a wider variety of exams

X-ray Beam Distribution

Re-engineered Optics Assay for optimized X-ray beam spectrum

X-ray Transmission

Adaptive scatter correction ensuring uniform image quality

X-ray Detection

PUREViSION Detector – high precision manufacturing process produces a scintilator with 40% increased light output

X-Ray Beam Distribution

- > Optimized X-Ray Beam Spectrum
 - Adaptive beam shaping optics ensure homogenous photon spread maximizing image resolution, while minimizing dose in a variety of clinical tasks
 - Reduction in low energy scattered radiation

X-Ray Transmission

Two ways of managing scatter

Toshiba

- Adaptive scatter correction utilizing raw data based smart modeling ensures uniform image quality
- More primary photons are preserved for reconstruction = EFFICIENCY

Competitors utilize 3D hardware grid

- Primary photon absorption by the grid before detection
- Increase in exposure required to maintain signal to noise ratio

Photons

X-Ray Detection

Breakthrough manufacturing techniques

- **PUREVISION detector -** 40% increased light output resulting in higher detector efficiency
- Micro-blade cutting of a single ceramic ingot reduces imperfections ensuring superior luminescent properties

Physics

7

Clinics (risparmio di MDC)

At 80 kVp there are many 30-35 keV photons which are absorbed very strongly by iodinated contrast (k-edge = 33.2 keV)

"qualità delle immagini"

Note:

- » Per lo stesso valore di SD, è possibile modificare il comportamento del «NPS»
- » Visivamente l'uomo è sensibile alla composizione spettrale del rumore

FIRST (MBIR)

Forward Projected Model-Based Iterative Reconstruction SoluTion

Model Based Iterative Reconstruction:

- Integrated and easy to use
- Automated
- Fast

FIRST (Forward projected model-based Iterative Reconstruction SoluTion)

FIRST (Forward projected model-based Iterative Reconstruction SoluTion)

- 1. No more kernel but different algorithms
 - » Body and Cardiac for soft tissues
 - » Bone for high contrast structures
 - » Lung
 - » Brain

- 2. Works for both Volume and Helical acquisition
- 3. Integrated into ^{SURE}Exposure ensuring automatic dose reduction
- 4. Parallel reconstruction (AIDR 3D & FIRST) with fast reconstruction time (±3 min/vol)

Image quality improvement

FIRST results in:

- » Improved SNR at low dose
- » Improved Spatial Resolution

83 y.o. man, 80kg, BMI=28.7. Anticoagulant-related subcapsular liver hemator (FIRST

DLP = 75 mGy.cm, 1.1 mSv

FBP

Carotid artery stenting

FIRST

120kV / AEC50-250mAs /527.1 mGy.cm/3.1mSv

Courtesy of Prof. Awai. Hiroshima university hospital, Japan.

Follow-up after fixation of a OCD fragment in a 16 y.o. man

Literature suggests that

- » 0.16 mSv are sufficient to detect > 3 mm nodules
- » > 0.30 mSv are necessary to detect emphysema, ground-glass opacity nodules, nodules less than 3 mm

120kV, 3mAs, **FIRST** DLP = 13.5 mGy.cm, 0.19 mSv

 $DLP = 15.9 \text{ mGy.cm}, 3.5 \mu Sv$ $DLP = 0.6 \text{ mGy.cm}, 0.13 \mu Sv$

imaging nella routine "sottrazione"

A bit of Subtraction history

- 'CT angiography with digital subtraction of extra- and intracranial vessels' - Gorzer et al; 1994
 - $> 1^{st}$ subtraction technique

≻N=26

- ➢Bone removal 100% success rate
- Conclusion: Subtraction allows robust and fast selective elimination of bony structures and a better analysis of arteries at the level of the skull base. This is useful of both detection and therapy planning of intracranial aneurysms

- CTA = 'golden standard' for vascular occlusive disease
 Problems:
 - ➤Extensive calcium, stents
 - blooming artefacts
 - ➢Overestimation of stenosis
 - ➢ False positive diagnosis of occlusion

Original image

Subtracted image

Original image

Subtracted image

Standard bone removal

Standard bone removal

Body Perfusion

Deformable Registration

Registrazione deformabile calcola le differenze tra ogni singola immagine clinica e compensa il cambiamento di forma e di spostamento della posizione dovuti al movimento anatomico durante il processo di scansione.

Rigid or non-rigid registration? 26-y-o female with calcified chondroma para-vertebral

CT-Perfusion

Rigid Registration

Non-Rigid Registration

- DSA-like Subtraction
 - ➢ Removal calcifications & blooming
 - Removal streak artefacts from stents, clips
 - Better visualization of lumen
 - ➢Increased reader confidence
 - Zero click post-processing

> Does subtraction help us in this very difficult case?

> Does subtraction help us in this very difficult case?

Increased reader confidence
 Confirms re-stenosis right ICA
 Stenosis measurement more

accurate

Case 3: 80-y-o. Surgery in 2019 for giant cell tumor.
 Recurrance 2012. Radiotherapy. Follow-up

Courtesy University Hospital of Nancy, Pr. Blum

Courtesy University Hospital of Strasbourg, Pr. Roy

Case 4: 71-y-o female. Stent in left renal artery

➤ Case 8:

- More small peripheral arteries
- Improves contrast resolution
- Confirmation no distal stenosis

LAD Calcification

Pre Contrast

Post Contrast

Courtesy Dr K Kofoed, Rigshospitalet, Denmark

LAD Calcification

> No hemodynamically significant stenosis is seen.

CTA

Subtracted

Courtesy Dr K Kofoed, Rigshospitalet, Denmark

LAD Calcification

> No hemodynamically significant stenosis is seen.

Courtesy Dr K Kofoed, Rigshospitalet, Denmark

In stent Re-stenosis

> In stent re-stenosis is seen in the LAD.

Post Contrast

Courtesy Dr M Chen, NHLBI, National Institutes of Health, USA

In stent Re-stenosis

> In stent re-stenosis is seen in the LAD.

Subtracted

Courtesy Dr M Chen, NHLBI, National Institutes of Health, USA

Validation

- Subtraction Coronary CT Angiography for the Evaluation of Severely Calcified Lesions Using a 320-Detector Row Scanner, Yoshioka K & Tanaka R, Current Cardiovascular Imaging Reports, 2011; 4(6):437-446
- Subtraction Coronary CT Angiography for Calcified Lesions, Yoshioka K, Tanaka R, Muranaka K.Y, Cardiol Clinics, 2012; 30(1):93-102
- Improved evaluation of calcified segments on coronary CT angiography: a feasibility study of coronary calcium subtraction, Tanaka R, Yoshioka K, Muranaka K, Chiba T, Ueda T, Sasaki T, Fusazaki T, Ehara S, International Journal of Cardiovascular Imaging, 2013, Epub.
- Accurate Registration of Coronary Arteries for Volumetric CT Digital Subtraction Angiography, M. Razeto, J. Matthews, S. Masood, J. Steel, K. Arakita, *Proc. SPIE* Vol. 8768, 2013.

➤ Case 10:

Iodine map differentation between tumor and cyst

Exploits different kV-dependence

Subtraction Imaging Exploits total iodine signal

Clinical evidence (scientific)

LL-CHE4249

Education Exhibits

lodine Mapping of the Lung Using Subtraction Imaging for Pulmonary Embolism: Technique and Initial Clinical Experience

PARTICIPANTS:

Monique Brink MD, PhD: Speaker, Toshiba Corporation Eva M Van Rikxoort PhD (**Presenter**): Nothing to Disclose Jean Paul Charbonnier: Nothing to Disclose Sarah J Van Riel MD: Nothing to Disclose Cornelia M Schaefer-Prokop MD: Advisory Board, Riverain Technologies, LLC Mathias Prokop MD, PhD: Speakers Bureau, Bayer AG Speakers Bureau, Bracco Group Speakers Bureau, Toshiba Corporation Speakers Bureau, Koninklijke Philips Electronics NV Research Grant, Toshiba Corporation

Clinical benefits:

"This subtraction technique allows for excellent evaluation of lung parenchyma and pulmonary vessels and achieves a more than 3 times higher contrast-to-noise ratio than dual energy images at identical dose."

Subtraction CTA or DE

Compare to Dual Energy, what's the best ?

Comparison study: "Standard Bone Removal" Vs "Dual Energy Bone Removal"

Automated bone removal in CT angiography: Comparison of methods

based on single energy and dual energy scans

Marcel van Straten^{1,8)}, Michiel Schaap², Marcel L. Dijkshoorn³, Marcel J. Greuter⁴, Aad van der Lugt⁵, Gabriel P. Krestin⁵ and Wiro 1. Niessen⁶

Buy: 30,00 USD

Conclusions: Both techniques provided bone suppression in a fully automated way. DE provided more complete bone suppression in the neck, but at the cost of inferior vessel integrity, especially at the thoracic inlet. BSCTA showed excellent results for vessel integrity and was superior to DE in most of the vessels in or at the skull base.

Subtraction CTA or DE

Comparison study at CHU Strasbourg: Average dose for CTA Carotid

 (Dual Energy) Vs ONE VISION (Subtraction)
 Dual Energy (80 patients)
 716mGy.cm
 270mGy.cm

imaging nella routine "Dual Energy"

Dual Energy subtracts high energy data from low energy data

> So, DE is a kind of subtraction......

Case 11: DE follow-up treatment Nexavar* for HCC

Single energy 6 months post treatment

Iodine map

Blending

* Decreases tumor growth; anti-angiogenesis

Case 12: 71-y-o male. Pre-treatment evaluation mass in paranasal sinus

Endourology and Stones

Impact of Reduced-radiation Dual-energy Protocols Using 320-Detector Row Computed Tomography for Analyzing Urinary Calculus Components: Initial In Vitro Evaluation

Xiangran Cai, Qingchun Zhou, Juan Yu, Zhaohui Xian, Youzhen Feng, Wencai Yang, and Xukai Mo

MATERIALS AND METHODS

This prospective study enrolled 58 consecutive patients referred for assessment of urinary stone disease who were eligible for the study after they gave informed consent to our university hospital between January and November 2013.

<u>A total of 58 stones were extracted from the 58 patients</u> who underwent percutaneous nephrolithotripsy, open surgery, retroperitoneal laparoscopic pyelolithotomy, or ureterolithotomy. Patients' mean age was 39.7 ± 6.5 years (range, 16-72 years). Calculi were located in the renal pelvis and calices in 46 patients and in the ureter in 12 patients. Stone diameters varied between 5 and 28 mm (mean diameter, 13.6 mm). Analysis of

CONCLUSION

In this study, we were able to demonstrate the feasibility of compound analysis of urinary stones with low-dose DE-CT. Compared with chemical analysis, and with XRD serving as a reference standard, we were also able to precisely differentiate calcified, uric acid, and cystine stones with 96.6% accuracy while allowing for patient dose savings of up to 50% (1.81 mSv) using 135 kV, 50 mA and 80 kV, 290 mA scan protocols. When the

Virtual Non Contrast

Toshiba's Raw data analysis

- » One tube and one detector
- » High energy (kVp) during one rotation followed by low energy during another rotation

		TABLE 2. True and Measured Effective Atomic Numbers and Errors Between True and Measured Values					
		Inset Number	Rod-Type Substitute		True Effective Atomic Number	Mean Measured Effective Atomic Number	Error, %
	One tube and one detector	1	Adipose tissue	SZ-49	6.090	5.565	-8.62
))	One tube and one detector	2	Muscle	SZ-208	7.250	7.344	1.30
»	High energy (kVp) during one r	3	Soft tissue	SZ-207	7.010	7.054	0.63
		4	Compact bone	BE-T	13.179	13.386	1.57
		5	Cortical bone	BE-H	11.697	12.005	2.63
		6	Inner bone	BE-N	9.141	9.311	1.86
		7	Muscle + adipose	SZ-220	7.130	7.163	0.46
Tube Current					Eff Z Hio. Eff Z fat = Eff Z bone. Eff Z henner Eff Z home. Eff Z home. Eff Z home. I B. 2 (bloc 2) 7.82 (bloc 2)	7:42 ED 3.34 5.92 ED 3.09 13.8 ED 5.12 hage ± 6.75 12 (0.00 mg iodine) 17:5 7.8 17: (0.00 mg iodine) 17:5 7.8 17: (0.00 mg iodine) 17:5 7.8 17: (0.00 mg iodine) 17:5 7.8 17: (0.00 mg iodine) 17: (0.	

Source: Fuminari et al, DE analysis at 320-detector CT (2014)

Publication

- 1. Chaytor R.J. et al, "Determining the composition of urinary tract calculi using stone-targeted dual-energy CT: evaluation of a low-dose scanning protocol in a clinical environment", Br J Radiology, (2016)
- 2. Fuchs M. et al, "Acute vertebral fracture after spinal fusion: a case report illustrating the added value of single-source dual- energy CT to MRI in a patient with spinal instrumentation", Skeletal Radiology, (2016)
- 3. Kiefer T. et al, "Single source dual-energy CT in the diagnosis of *gout*: Diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet", Eur J of Radiology 85 (2016)
- 4. Funabashi N. et al, "Influence of tube voltage and heart rate on Agatson Ca score, novel ECG-gated dual energy reconstruction 320 slice CT technique", Int. J. of Cardiology, Vol. 180, (2015)
- 5. Diekhoff T. et al, "First experience with single-source dual-energy computed tomography in six patients with acute arthralgia : a feasibility experiment using joint aspiration as a reference", Skeletal Radiology, (2015)
- 6. Fuminari T. et al, "Measurement of Electron Density & Effective Atomic Number by Dual-Energy Scan Using a 320-Detector CT Scanner with Raw Data-Based Analysis: A Phantom Study", J of comp assisted tomography, (2014)
- 7. Cai X. et al, "Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation", Urology, Vol. 84, (2014)
- 8. Diekhoff T. et al, "Detection and Characterization of Crystal Suspensions Using Single-Source Dual Energy Computed Tomography: A Model of Crystal Arthropathies", Investigative Radiology, (2014)

Tatsugami F. et al, "Dual energy raw data based decomposition analysis on Aquilion ONE", VISIONS 23, (2014)
 Buckley O. et al, "Dual energy CT in the Prime time", VISIONS 23, (2014)
 Rogalla P. et al, "One Man's Trash is Another Man's Treasure: Dual-energy in Bowel Ischemia", ISCT (2015)

"il futuro già attualità"

TOSHIBA Super High resolution CT

Evaluation of Spatial Resolution of Super-High-Resolution CT with 0.25-mm Slice Thickness × 1 Detector Rows

<u>Yashihira Malaya¹</u> Hirobumi Nagasawa², Masahiro Suzuki², Toshih. Talahiro Goto², Ayutaro Kakinuma², Noriyuki Mo on behalf of the Super-high-resolution CT Study G

⁴ Shipudka Cancer Center Hospital ⁹ National Cancer Center Hospital ⁹ National Hospital Organization 5 ⁹ Teshiba Medical Systems Corpo ⁹ Teshyo Midtown Clinic

<u>Note:</u>

With super high resolution CT, MTF @10% is approx 4x as high as current system (see Figure left).

This can be seen in evaluation of lp/cm images (see Figure above).

TOSHIBA Super High resolution CT

<u>Note:</u>

Clinical images show the difference between conventional CT and super high resolution CT @ D-FOV of 20mm. The latter (right image) shows much more details and clinical values compared to the former (left image).

al di là dei "numeri"

Il numero degli strati rappresenta il parametro di riferimento per la suddivisione in classi merceologiche/economiche

Si parla di «Riduzione della Dose»

> Si elencano una serie di programmi applicativi che devono essere inseriti

Ma si valutano sempre gli stessi parametri !

Classificazione Nazionale Dispositivi

Z11030601	TOMOGRAFI ASSIALI COMPUTERIZZATI - INFERIORE O UGUALE A 2 STRATI
Z11030602	TOMOGRAFI ASSIALI COMPUTERIZZATI - SUPERIORE A 2 STRATI ED INFERIORE A 16 STRATI
Z11030603	TOMOGRAFI ASSIALI COMPUTERIZZATI - SUPERIORE O UGUALE A 16 STRATI ED INFERIORE A 64 STRATI
711020505	
211030605	TOMOGRAFI ASSIALI COMPUTERIZZATI - SUPERIORE O UGUALE A 64 STRATI ED INFERIORE A 128 STRATI
Z11030606	TOMOGRAFI ASSIALI COMPUTERIZZATI - SUPERIORE O UGUALE A 128 STRATI ED INFERIORE A 256 STRATI
Z11030607	TOMOGRAFI ASSIALI COMPUTERIZZATI - SUPERIORE O UGUALE A 256 STRATI
Z11030680	TOMOGRAFI ASSIALI COMPUTERIZZATI (TAC, TC) - COMPONENTI ACCESSORI HARDWARE
Z11030682	TOMOGRAFI ASSIALI COMPUTERIZZATI (TAC, TC) - COMPONENTI ACCESSORI SOFTWARE
Z11030685	TOMOGRAFI ASSIALI COMPUTERIZZATI (TAC, TC) - MATERIALI SPECIFICI
Z11030699	TOMOGRAFI ASSIALI COMPUTERIZZATI (TAC, TC) NON ALTRIMENTI CLASSIFICATI

Comparazione tra TC a 80 e 160 strati

	80 strati	160 strati		
Numero di file detettori asse Z	80	80		
Numero detettori/fila	896	896		
Spessore minimo dello strato	0,5 mm	0, 5 mm		
Larghezza detettore asse Z	40 mm	40 mm		
Volume acquisito in 10 sec. Pitch 1	1142,8 mm	1142,8 mm		
Risoluzione longitudinale in spirale	0,31 mm	0,31 mm		
Risoluzione longitudinale in assiale (volume)	0,35 mm	0,31 mm		

La contestualizzazione dei numeri

Risoluzione di contrasto	4 mm @ 0,3%	kV	120	mAs	250	Dose mGy	27	kW	30	Concorrente X	305%
Risoluzione di contrasto	4 mm @ 0,3%	kV	120	mAs	82	Dose mGy	8,4	kW	9,84	Toshiba (Prime)	
						-					
Risoluzione di contrasto	2 mm @ 0,32%	kV	120	mAs	353	Dose mGy	31,1	kW	42,36	Concorrente X	186%
						-					
Risoluzione di contrasto	2 mm @ 0,3%	kV	120	mAs	190	Dose mGy	18,6	kW	22,8	Toshiba (Prime)	

Risoluzione di contrasto	4 mm @ 0,3%	kV	120	mAs	250	max mA a 0,3 sec.	833,33 mA	100 kW	Concorrente X
Risoluzione di contrasto	4 mm @ 0,3%	kV	120	mAs	82	max mA a 0,3 sec.	273,33 mA	33 kW	Toshiba (Prime)
Risoluzione di contrasto	2 mm @ 0,32%	kV	120	mAs	353	max mA a 0,3 sec.	1176,66 mA	142 kW	Concorrente X
Risoluzione di contrasto	2 mm @ 0,3%	kV	120	mAs	190	max mA a 0,3 sec.	633,33 mA	76 kW	Toshiba (Prime)

Made For life